Many manufacturing and distribution companies are trying to leverage data in order to solve a variety of business problems. Some companies are focused on improving delays or inaccuracies in order fulfillment. Some are trying to consolidate logistics spend or improve forecast accuracy; while others look to streamline inventory levels and more efficiently store product. Whether you’re tackling one of these problems or attempting to solve all of them, the end goal is to increase efficiency and optimize your supply chain.
One of the biggest barriers in effectively leveraging supply chain data to solve these problems is disparity. Data disparity comes in many forms, including (but not limited to) disparate systems, inconsistent data, and differing data terminology. This conundrum is commonly found in M&D companies because they tend to operate as multiple, separate product lines or business units. It is especially prevalent in organizations that have grown through mergers and acquisitions. A robust, collaborative supply chain analytics solution can overcome disparity through the following:
When solving these supply chain data challenges, it is important to keep in mind the future growth of the organization. Formulating and documenting a repeatable approach for conquering data disparities will accelerate the process of onboarding additional product lines or business units onto a supply chain analytics solution. If your business is experiencing any of these challenges, formulating and executing a robust supply chain analytics strategy will certainly uncover opportunities to reduce your operating expenses.
For additional insight on conquering data disparity, contact us.